| Appendix B | | h_i | Depth of ith channel segment | |----------------------------------|---|--------------------------------------|---| | Notation | | i | Inlet channel segment number (from 1 to m) | | $a_{\scriptscriptstyle B}$ | Bay tidal amplitude | k_{en} | Entrance loss coefficient | | a_o | Ocean tidal amplitude | k_{ex} | Exit loss coefficient | | $\hat{a}_{\scriptscriptstyle B}$ | Dimensionless bay tidal amplitude | K | Keulegan's repletion coefficient | | A | Cross-sectional area of the channel | L | Representative length | | $A_{\scriptscriptstyle B}$ | Bay surface area | L_c | Channel length | | A_c | Channel cross-sectional area | L_h | Horizontal length ratio | | A_{c^*} | Critical cross-sectional area | L_r | Model-prototype length ratio used for scaling | | A_{CE} | Cross-sectional area of throat | $L_{\scriptscriptstyle \mathcal{V}}$ | Vertical length ratio | | A_{i} | Cross-sectional area of ith channel segment | m | Total number of channel segments | | C | Chezy bed resistance coefficient | M | Total annual littoral drift | | C_a | Sediment concentration in the bed layer | M_{mean} | Average rate of longshore transport | | C_h | Concentration of suspended sediment at a distance h above the bed | n | Manning's bed resistance coefficient | | C_K | Coefficient accounting for nonsinusoidal variation of current | p | Pressure | | | | p | Coefficient in channel width-depth relationship | | d | Depth | P | Tidal prism | | E | Elasticity | q | Exponent in channel width-depth relationship | | F | Impedance | Q | Discharge through channel | | F_e | Force due to elasticity | Q_b | Bed-load transport rate | | F_{g} | Force due to gravity | Q_d | Rate of sediment deposition per unit width of channel | | F_{i} | Inertial force | | | | F_{pr} | Force due to pressure | Q_f | Freshwater discharge from upstream sources | | F_{st} | Force due to surface tension | $Q_{\scriptscriptstyle m}$ | Maximum discharge through channel | | F_{μ} | Force due to viscosity | Q_{max} | Maximum discharge to inlet | | g | Acceleration due to gravity | Q_s | Total suspended load on the updrift side of the channel | | h_c | Mean channel depth | | | ## EM 1110-2-1618 28 Apr 95 | Q_{sI} | Rate of transport of suspended load reaching the channel | β | Dimensionless dissipation coefficient | |---------------------------------|---|-------------------------------|---| | | | β | Stability index | | Q_{s2} | Transport rate across the channel | γ | Kinematic viscosity | | r | Ratio of transport rate to inlet discharge used to characterize bypassing | ε | Lag of slack water after high or low water in the ocean | | S | Bay storage volume | η | Instantaneous water surface elevation relative to | | t | Time | '1 | mean water level | | T_r | Time ratio | $\eta_{\scriptscriptstyle B}$ | Instantaneous water surface elevation in the bay | | и | Current velocity in channel | $\eta_{\rm o}$ | Instantaneous water surface elevation in the ocean | | u_m | Maximum current velocity in channel | λ | Stability index | | \hat{u}_m | Dimensionless maximum channel velocity | μ | Dynamic viscosity | | V | Current velocity in channel | ν | Dimensionless maximum velocity | | V_{max} | Maximum channel velocity | $\nu_{\scriptscriptstyle E}$ | Equilibrium value of v | | V'_{max} | Dimensionless maximum channel velocity | ρ | Density | | V_T | Threshold velocity for sand transport | σ | Surface tension | | W_c | Width at inlet throat | σ | Tidal frequency | | α | Dimensionless tidal frequency | τ | Angular measure of the lag of slack water in the channel after midtide in the ocean | | $\alpha_{\scriptscriptstyle 1}$ | Coefficient in relationship between C and $\boldsymbol{A}_{\boldsymbol{c}}$ | Ω | Tidal prism | | α_2 | Coefficient in relationship between C and $\boldsymbol{A}_{\boldsymbol{c}}$ | | F |